
NASA TECHNICAL NOTE N A S A  TN D-4516 

*o 

rn 
w- 
v 

I 
n 
z c 
4 
rn 
4 z 

GPO PRICE $ 

CSFTI PRICE(S) $ 

Hard copy (HC) d 
Microfiche (MF) %-5- 

ff 653 July 65 

I 

2 N 613- 2 1822 
0 

c I 

I 

COLLISIONLESS CYLINDRICAL DIODE 

by Churles M .  Goldstein 

Lewis Research Center 
Clevelund, Ohio 

N A T I O N A L  A E R O N A U T I C S  A N D  S P A C E  A D M l N  S T R A T I O N  W A S H I N G T O N ,  D. C. A P R  1 1 9 6 8  



~~ ~ ~ ~~ 

NASA-TN D-4516 

COLLISIONLESS CYLINDRICAL DIODE 

By Charles M. Goldstein 

Lewis Research Center 
Cleveland, Ohio 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Clearinghouse for Federol Scientific and Technical Informotion 
Springfield, Virginia 22151 - CFSTI price $3.00 



COLLlSlONLES S CYLlN DRlCAL DIODE 

by Charles M. Goldstein 

Lewis Research Center 

SUMMARY 

A complete formulation and numerical results for the collisionless space-charge 
problem of a cylindrical diode with thermionically emitted electrons are presented. This 
formulation allows calculation of the current-voltage characterist ics from the Schottky 
retarding region to saturation. In addition, the onset of the Schottky retarding region is 
unambiguously defined. 

INTRODUCTION 

The study of collisionless electron flow in cylindrical geometries has a long history; 
a review of these studies is to be found in the article by Ivey (ref. 1). Except for the 
studies of Wheatcroft (1940, ref. 2) and Schottky (1914, ref. 3), the ear ly  studies in- 
volved broad idealized assumptions such as monoenergetic electron emission and virtual 
cathodes at the potential minimum. 

Schottky (ref. 3) derived a n  expression for the current-voltage characterist ic in the 
retarding potential range, that is, for  cases  where the potential is monotonically decreas- 
ing. He assumed, however, that his relation was valid for all monotonically retarding 
potentials. It will be shown in this report  that there exists, in general, a range of col- 
lector potentials associated with monotonically retarding potentials for  which Schottky's 
relation is not valid. In his defense, however, let it be noted that this potential range 
becomes negligible for large ratios of collector radius to emitter radius (e. g. , filament 
emitters).  

equations over a limited range of collector potentials. These solutions were obtained by 
laborious numerical calculations before the advent of the high speed electronic computer. 
He was forced, therefore, to employ some approximate methods of solution which unfor- 
tunately hid some of the physical aspects in  the range he treated. Because of this limi- 
tation, numerical solutions fo r  the cylindrical diode from the Schottky retarding regime 

Wheatcroft (ref. 2) succeeded in obtaining numerical solutions to the mathematical 



to saturation have never been obtained. This report  is an attempt to f i l l  the void. We are 
more fortunate than Dr.  Wheatcroft in the availability of high speed electronic computers. 

Because the wide spread availability of computers today provides the means of calcu- 
lating diode characterist ics for all collector potentials of interest ,  it will not be necessary, 
as in previous studies (refs. 2 and 4), to concern ourselves with the position and magnitude 
of the potential minimum in the space-charge-limited cases.  Meaningful to the experi- 
mentalist a r e  the parameters he can control and the variables which he can observe. 
Among the former a r e  emitter radius, temperature, work function, collector radius, and 
collector potential. The easiest  (and often times the only) variable he can measure is the 
current to the collector. It is therefore somewhat artificial to present theoretical resul ts  
in terms of the position and magnitude of the potential minimum. 
diode characteristics, it is, furthermore,  easy to investigate the theoretical variation of 
the potential minimum by numerical solutions. 

For given physical 

ANALYSIS 

An investigation of the characterist ics of the collisionless cylindrical diode from the 
Schottky retarding region (hereinafter SRR) to saturation is presented. SRR is defined 
as that region in which the Schottky relation (ref. 3) 

is valid. In equation (l), 

(3) 

C a = -  
r 

rO 

1 - a-2 

c p ' - -  V 

-1 A =  

kT 

ro and rc are the emitter and collector radii, respectively, V is the potential energy 
(not just  potential) of an  electron in the electrostatic field of the diode, T is the emitter 
temperature, k is the Boltzmann constant, and cp is the dimensionless electrostatic 
potential. (All symbols are defined in appendix A . )  
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Figure 1. - Space-charge potentials. 

Physically, SRR denotes a region wherein the current to the collector is a function of 
the collector potential only and not of the functional form of the potential in the inter-  
electrode space. In the planar case (ref. 5), the onset of SRR corresponds to the onset 
of a monotonically retarding potential. In general, this correspondence is not true in  the 
cylindrical case; that is, there may be monotonically retarding potentials for which the 
electron current to the collector is not a function of the collector potential alone. 

d r ica l  diode are shown in figure 1. Here the dimensionless radius r is defined as 
;/so. In general, the potential signaling the onset of SRR lies below that of the first 
monotonically decreasing potential, as shown by curves c and d, respectively. Curve b 
depicts a typical space-charge potential and curve a signals the onset of saturation cur -  
rent  to the collector. Curve a is identified by zero potential slope at the emitter,  while 
curve c is identified by zero  potential slope a t  the collector. 

The problem is to find self-consistent solutions to Poisson's equation which, for the 
cylindrical diode, can be expressed in the form (derived in appendix B) 

Characterist ic potentials (and their corresponding collector potential) for  the cylin- 

where 

( Z l n r  

the space-charge parameter Bo (mks units) is given by 
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2 2  

EokT 
e nOrO Bo =- 

and n((,cp) represents the dimensionless electron density. 

tribution and encounter no collisions, formal expressions for the electron density 
n(<, c p )  as  a function of radius and potential a r e  derived in appendixes B to D. These 
expressions for  the density become quite complex because of the exchange between radial  
angular momentum in cylindrical geometries. 
description of the possible electron trajectories in t e rms  of an equivalent one -dimensional 
potential energy. 

With the assumption that the emitted electrons have a half-Maxwellian velocity dis-  

This exchange can be clarified by a 

E q u iva I e n t 0 n e  - Di men s iona I Potentia I En e rg i es 

The sum of the radial and tangential energy components of an electron at radius 
may be expressed by 

(4) 
1 -2 L2 - mu + v(;) + - 
2 2m;2 

where L is the angular momentum. 
reasons. ) Since this sum is a constant of the motion, 

(Here dimensional variables are used for heuristic. 

L2 1 -2 L2 - 1 mu -2 + v(;) + - - - - muo+- 
2 2mr A2 2 2 m r i  

(5) 

where, for convenience, V(;,) is taken to be 0. 

defined by adding -L /2m;: to both sides of equation (5): 

A new constant of motion E will now be 
2 

Note that E is equivalent to the radial  kinetic energy of emission. Now, as in  refer- 
ence 6, an equivalent one-dimensional potential energy (hereinafter EODP) can be 
defined as 
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where the force on the equivalent particle is given by -dv/di. The "angular potential 
energy'' VL(i) represents  the contribution of angular motion to v(;). The potential 
energies V(G), V, (G), and v(;) are shown in figure 2 for a typical space-charge con- 
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c 

dition. Here, V(G) has 

I ^  

ro '1 TC 

Figure 2. - Equivalent one-dimensional potential for cylindrical diode. 

the form of a potential energy barrier in front of the emitter,  
while V,@) has the form of a potential energy sink. Their sum, ?(;), also has the 
form of a potential barrier in front of the emitter, but its maximum is much less than 
that corresponding to V(;). By referring again to v(;), it can be observed that only 
electrons with E > E2 can "escape" the emitter and reach the collector. This is 
in contrast to the planar geometry where E must be greater  than E3 f o r  the electron 
to reach the collector. An electron with E = El  < E2 will reach a radius il before 
returning to the emitter.  

Qualitative characteristics of the different EODP appearing in the analysis of the 
cylindrical diode space-charge problem are shown in figures 3 and 4. In these figures, 
the potential energy V(i)  is a characteristic of the diode operating condition, while 
VL(G) is the angular potential energy of a particular electron. In other words, the whole 
spectrum of angular potential energies is present at any given time since 
VL(?) L2 = rovo, where Go is the tangential electron emission velocity. For  obvious 
reasons of clarity, only one V,(?) is depicted in each case. Since the different EODP 
depend on the functional form of v(;), not all the types shown in figures 3 and 4 can exist 
at one time. 

-2 -2 
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Figure 3. -Types of equivalent one-dimensional potentials for cyl indrical diode with potential maximum Ir, is  
position at potential maximum). 

In figure 3(a) only those electrons for  which E is greater  than the maximum 
N 

(hereinafter Vmax) will reach the collector. The EODP of figure 3(b) allows all elec- 
trons to reach the collector regardless of E (even electrons for which E = 1/2 mu: = 0). 
Electrons for  which the EODP is as that depicted in figure 3(c) will reach rl regardless 
of E ,  but wil l  reach the collector only for  E > ITmax. In figure 3(d), two maximums oc- 
c u r  in V. Electrons for which E is greater than the first Vmax may still be returned 
to the emitter if E is not simultaneously greater  than the second Vmax. 

potential energy. The interpretations of the three different EODP are the same as in  
figure 3. Figure 4 is important because it clarifies the definition of ths Schottky retard-  
ing region (SRR). A s  previously defined, SRR occurs when the electron current to the 
collector is a function of the collector potential only. It has been observed that an elec- 
tron cannot reach the collector unless it has an  E > V-ax. Hence, the SRR is defined 
by those potential energies V such that for all VL, Vmax occurs at the collector. 

N 

N N 

N 

Three other EODP a r e  shown in figure 4 for the case of a monotonically retarding 

N 
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Emitter Collector 

(a) 

Emitter Collector 

(b) 

Emitter Collector 

( C )  

Figure 4. - Types of equivalent one-dimensional 
potentials for cylindrical diode with monotonic 
potential. 

Figure 4(a) shows that this condition is not always satisfied .,y a monotonically retarding 
potential energy. 

depicted in figure 3(a). A complete formulation of the collisionless electron space-charge 
problem embodying all the trajectories is given i n  appendixes B to D. 

As shown in appendix B, Wheatcroft (ref. 2) implicitly recognized only that condition 
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DISCUSSION 

In the absence of space charge, the current-voltage curves would coincide with the 
Schottky curves (defined by eq. (1)) in the retarding region (fig. 5). 
(In rc/ro = 0), the Schottky curve is simply the Maxwell-Boltzmann line associated with 
the planar diode. The current-voltage curves with space charge present a r e  shown in 
figure 6 for various values of In rc/ro and Bo (defined in eq. (B12)). 

For  given In rc/ro, increasing Bo results in  a larger  saturation potential and a 
decrease in I/Io for  a fixed collector potential. A similar  observation is valid if Bo 
is given and In rc/ro is allowed to increase. 

For  rc/ro = 1 

Dimensionless collector potential, pD(rc) 

Figure 5. - Schottky curves. 
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As mentionec in  the INTRODUCTION, the onset of the SRR does not coincide, in 
general, with the onset of monotonic retarding potentials. Figure 7 demonstrates this 
fact  quantitatively. The solid lines in this figure are simply the Schottky curves of fig- 
ure  5 plotted against a different abscissa to effect a better separation. The dashed lines 
indicate the locus of points where the potential f i r s t  becomes monotonic for  the indicated 
values of Bo. The dot-dash lines represent the locus of points signaling the onset of the 
SRR for the indicated values of Bo. Here it is also apparent that the two lines coalesce 
into one as rc/ro gets very large. 
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Comparisons of the theoretical resul ts  with some experimental resul ts  are given 
in figure 8.  (The abscissas  have been corrected for the experimentally determined con- 
tact potential A q . )  The experimental results in figure 8 were reported by Schottky 
(ref. 3) in 1914. The theoretical curves of figure 8 were obtained by employing the ex- 
perimentally determined values of Io, T, and In rC/ro to compute the value of Bo 
and kT/e. 

There is, of course, no means at this late date of interrogating the experimentalist 
I 

3.5 - 
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(c) Schottky (ref. 3). Run 8; collector radius, 30. 

Figure 8. - Concluded. 

to t ry  to discover reasons fo r  the discrepancies between theory and experiment. It is 
to be noted that Schottky also observed marked discrepancies between observed resul ts  
which he could not satisfactorily explain. Of importance here,  however, is that the 
entire theoretical current-voltage characterist ic can be generated and compared with 
experiment. After perusing the theoretical current-voltage curves of figure 6, one 
might suspect that something had affected the experimental determination of Bo in 
figure 8(b); while in figure 8(c) either Gc/ro o r  a combination of work function and Bo 
might be suspect. 

instance, j u s t  when it is no longer valid to neglect short  range electron-electron inter- 
actions is still a moot point. 

Further experimentation might a lso better define limitations of the model. For  

CONCLUSIONS 

A complete formulation of the collisionless cylindrical diode with electron emission 
has been presented. The numerical solutions describe the physical characterist ics of 
these diodes. It is now possible, by comparing theory with experiment over the whole 
current-voltage curve, to obtain a more detailed understanding of the cylindrical elec- 
tron diode. 

16 



The analysis a lso shows that the onse, of the Schottky retarding region for  cylindri- 
ca l  diodes does not coincide, in general, with the onset of monotonically retarding 
potentials. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, January 9, 1968, 
129-02-01-05-22. 
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APPENDIX A 

SYMBOLS 

space -charge parameter 
(eSS- (B11) and (B12)) V 

A 

total energy in r, e plane (eq. (5)) V 

electron current (eq. (1)) 

emitted (or saturation) electron 
current 

Boltzmann constant (eq. (3)) 

angular momentum (eq. (4)) 

length of diode (eq. (B5)) 

electron mass (eq. (4)) 

electron density (eq. (B6)) 

parameter, space-charge 
integral (eq. (C 30)) 

parameter, space-charge 
integral (eq. (B9)) 

parameter, space-charge 
integral (eq. (C 30)) 

parameter, space-charge 
integral (eq. (B10)) 

radial coordinate (eq. (4)) 

space -charge integral 
(eq. K1)) 

emitter temperature (eq. (B3)) 

radial velocity component 
(eq. (B3)) 

upper and lower limits of 
integration over uo (eq. (B7)) 

W 

Z 

€0 

77 
8 

5 

cp 

q C  

9 cm 

qsat 

‘psch 

thermal velocity (eq. (B3)) 

potential energy 

aximuthal velocity component 
(eq. (B3)) 

axial velocity component (eq. (B3)) 

axial coordinate (eq. (Bl))  

vacuum permittivity (mks units) 

(eq. (B12)) 

parameter (eq. (B3)) 

aximuthal coordinate (eq. (Bl))  

transformed coordinate (eq. (B13)) 

dimensionless potential (eqs. (1) 
to (3)) 

collector potential 

collector potential for potential 
with zero slope at collector 

collector potential for potential 
with zero  slope at emitter 

collector potential for first 
potential i n  SRR 

Subscripts: 

e 

m potential minimum 

max maximum value 

min minimum value 

Superscript : 

A dimensional variable 

envelope, W heatc r of t plots 
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APPENDIX B 

MATHEMATICAL FORMULATION 

Except for notation, this appendix reiterates appendix 1 in Wheatcroft's paper (ref. 2). 
All symbols are defined in appendix A. 

Motion of Electrons in Cylindrical Geometry 

The coordinate system to be employed is depicted in figure 9. The velocity compo- 
nents are given by 

'=' d t  J 
In this system, the dimensionless radial velocity component u(r) satisfies the equa- 

tion 

Figure 9. - Cylindrical 
coordinate system. 
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where 

and the subscript fers to ca ditions at = 3, (r = 1). 
With this notation, the Maxwellian velocity distribution function of the emitted cur-  

rent I can be written as 

du dvo dwo 0 dI = - 
a 

A .  

where, as in  equations (B3), w w/u7. 

Electron Space Charge 

The contribution to the dimensionless electron density n(r) = G(r)/io of dI reach- 
ing r is given by (after integrating over wo f rom -00 to ..) 

- @+v:) 

dn(r) = - 2 U o e  duo dv 
TI? 4 4  

where no is the density of emitted electrons given by 

20 



-- 

and u(r) is given by equation (Bl). 
Integrating over uo,vo resul ts  in 

It should be noted that contributions to the density n(r) at any radius r wil l  resul t  
from electrons flowing to the collector as well as electrons returning to the emitter. 
These various contributions are implicit in the l imits of equation (B7). Their unique 
formulations are presented in appendixes C and D where Go and u 
defined in  t e rms  of vo. 

transforming the variable of integration to u(r) (eq. (B2)): 

are explicitly -0 

The integration over duo in equation (B7) may be performed in closed form by first 

03 
f l  

- 
n(r) = - 

J-, 

Poi sson s Equation 

Poisson's equation in dimensionless form for the cylindrical case becomes 

- I d  - (. z) = B, n(r) 
r d r  

where Bo (in mks units) is 

2 1  



2 2  
B z  e nOrO 

O -  EokT 

and c0 is the permittivity of free space. Employing the transformation, 

Poisson's equation (B11) can then be expressed as 

where the pr imes denote differentiation with respect to 5 .  In t e rms  of 5 ,  equations (B8), 

where 

and 

22 



APPENDIX C 

RETARDING FIELD 

Space -C ha rge Integra I 

Although the numerical solutions will ultimately be performed by employing the in- 
dependent variable { and equations (B14) to (B18), in this section the independent var i -  
able r (eqs. (B8) to (B10)) will  be used purely for notational convenience and clarity 
because it precludes the need for  writing the troublesome and nonpysical e' for  r. 
Furthermore,  it will be convenient to define a factor S such that 

o r  

and from equation (BlO), 

r = l  'm 

Figure 10. -Typical Potential. 
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A typical dimensionless potential distribution is shown in figure 10 (note by definition of 

r < rm. It is now necessary to determine the limits Ti2 and 5. They will, in general, 
be functions of vo. 

corresponds to qmin). The retarding regionof this potential is specified by 
qy 'max 2 

0 

Case 1: W heatcroft Case 

The relation between uz and vz is most easily seen by a Wheatcroft plot. The 
actual plot employed by Wheatcroft (ref. 2, fig. 7) is shown in figure 11 with the notation 

Once 

0 Initial tangential velocity squared, "20 
Figure 11. - Wheatcroft plot. 

of the present report. Before discussing the interpretation of the Wheatcroft plot, it will 
be helpful to describe its derivation. From equation (B2), the radial  velocity at any r 
of an electron emitted with initial velocity components uo and vo is given by 

If a given electron (i. e.,  a given ordered pair (vo, 2 2  u,)) reaches a given radius r, its 
2 radial  velocity there must be greater  than o r  equal to zero.  Setting u (r) = 0 in equa- 

tion (C4) results in a linear relation between u: and v2* 
0' 
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2 2  The locus of points (vo, uo) satisfying equation (C5) is drawn in figure 11. None of the 
electrons whose ordered pairs (vo, uo) lie below this line can reach radius r. The con- 
verse  is not true,  as shown in the next paragraph. 

In figure 12 equation ((25) has been plotted for two radii. The line labeled rm cor-  
responds to the location of ‘pm. As described previously, none of those electrons with 
ordered pairs (vo, uo) in the region defined by u i  = 0, v = 0, and 

uo < - (~(r,) - q(rm)vo will reach r,. Neither wi l l  all the electrons lying outside this 
region reach r,. In fact, the shaded area in the figure shows a group of electrons out- 

2 2  

2 2  2 
0 

2 2 - 

0 
Initial tangential velocity squared, 4 

Figure 12. - Construction of Wheatcroft plot. 

side this region which do not reach rl < r,. This is portrayed in a different manner by 
the EODP given in  figure 3(a). There the critical potential energy was not VmaX but 
Vma,; generally Vmax occurs at a smaller radius than Vmax. The correlation between 
figure 3(a) and figure 12 can best  be understood by noting that a given v: in figure 12 
corresponds to  a particular VL in  figure 3(a). Increasing uo in figure 12 corresponds 
to an  increase in E in figure 3(a). 

The curve in figure 12 is simply the envelope of the curves in  equation (C5) fo r  
r I r 5 rm. All electrons with (vo, uo) outside this envelope reach the collector, or,  
equivalently, all electrons with ( v ~ , E )  so  that E > Vmax in figure 3(a) will reach the 
collector. 

2 2  The equation for the envelope (ve,ue) = 0 can be derived in parametric form from 
equation (C5) by the usual method to give 

N N 

2 

2 2  
0 
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t3<p (t) l S t 5 r  2 
m ve(t) = - 

2 
and 

(the Wheatcroft case (ref. 2) explicitly requires  the existence of a potential minimum in 
the interelectrode space). 

From equations (C2) and (C3), the minimum radial  velocity u t  at the emitter 
such that an electron will reach radius r is (see fig. 11) 

I u2 = -<p(r) - q(r)vo 2 0 5 vo 5 ve(r) 
-0 

The maximum radial velocity for  electrons passing radius r once is 

-2 u = m  
0 

and for electrons passing radius r twice is 

0 5 vo 5 ve(r) (C lob) 

Substituting equations (C9) and (C10) into equation (C3) results in, for  electrons passing 
radius r once, 

0 5 v  5 m  (C 1 la) 
0 erf p =  1 

and for electrons passing radius r twice, 

erf p = erf p, 0 5 vo i ve(r) (C 1 lb) 

26 



erf q = 0 0 5  v 5 ve(r) 0 

erf q = erf pe ve(r) < vo < 00 

where 

p i  = uz v i  + v(r)vo 2 + <p (r) 0 
Substituting equations (C11) to (C13) into equation (C2) results in 

(C 12a) 

(C 12b) 

or  

where the subscript 1 refers to case 1, and ve(r) 2 is, from equation (C7a), 

ve(r) 2 = - r 3sa (4 
2 

Case 2: Modified Wheatcroft Case 

Wheatcroft (ref. 2) considered only the situation where r, 5 rc (radius of the col- 
lector). The situation that exists when the potential is monotonically decreasing with 
negative slope at the collector is a simple extension which can be completely described 

= 0 
as in case 1 from t = 1 to t = rc. Then, however, it deviates from the previous case 
(dashed curve in fig. 13) and proceeds along the straight line defined by 

by reference to figure 13. Here the envelope [vi(t), ue(tl 2 proceeds in the same way 

27 



0 
In i t ia l  tangential velocity squared, v i  

Figure 13. - Modified Wheatcrofl plot. 

Hence, the only change in analysis for case 1 is an obvious modification to the definition 
of the envelope, equation ((27). 

Case 3: Effective Accelerat ing Field for  ro < - -  r < rm 

Case 3 can be defined by either figure 14 or the EODP of figure 4(b). Figure 3(a) 
shows that case 1 tacitly assumes a net retarding field at the emitter.  This is most 
easily observed by noting the slope of 7 at ro; a positive slope implies a retarding 
field and vice versa.  Figure 4(b), however, shows case 3 to have an accelerating field in 
front of the emitter.  

2 2 The only physically meaningful region in  figure 14 is that for which vo > 0, uo > 0. 
The point to, 2 2  uo)= (v;, 0) indicated in  this figure corresponds to rl in figure 4(b); 

that is, an electron emit ed with E = 0 and L = rovl wil l  reach radius rl before being 
reflected by to the emitter. 

Figure 14 implies a collector potential <pc well within for it is readily 
apparent that any electron with emitted velocities such that on or above the 
line labeled rc will reach the collector. 

For this case,  where r = r1 

2 u = o  
-0 

' v  -=uJ 
0 -  

1 28 



and for 

N O  3 

d 5 -p(rl) 
3 5 v) 

h 
c .- 
8 - 
W > 
m 
- .- 
B 
I 

m 
- .- 5 0  - 

v: 
0 

In i t ia l  tangential velocity squared, v: 

Figure 14. - Wheatcroft plot: effective accelerating region. 

electrons passing rl  once, 

-2 uo = O a v o 5  00 

and for electrons passing r l  twice, 

Hence, for electrons passing r1 once 

erf p = 1 

for electrons passing r l  twice 

o s v o 5 w  

0 5 vo 5 vc 
C 

erf p = erf p 

erf q = 0 0 5 vo 5 v1 

‘v - = m  
v l -  0 -  erf q = erf qc 

and 
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2 where from equation (C5) for uo = 0, 

General Case for Monotonical ly Retarding Potentials 

Between cases  1, 2, and 3 there a r e  a number of cases  which a r e  merely variations 
on the same theme. Rather than describe all possible cases  individually, the equations of 
a general  situation wil l  be defined. It will then be shown how these equations may be 
easily specialized to represent all possible cases.  

shown in figure 1 5 .  In this figure, the envelope of interest  is given by the implicit equa- 
tions 

The EODP fo r  the general case is shown in figure 3(d). The Wheatcroft plot is 

(C 2 la) 

(C21b) 

2 Let  vr be defined by the point of tangency between the envelope and equation ((25). Then 
for r such that vx < vr, figure 15 can be represented by figure 16 where the envelope 
(vz, u:) = 0 is given by 

2 2  
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I 

In i t ia l  tangential velocity squared, vf 

Figure 15. - Wheatcroft plot: general case. 

U 

In i t ia l  tangential velocity squared, v i  

Figure 16. - General case: regime 1. 
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v > vx 
0 

(vi, u$ (vi, u;) = 0 

@, .:) = u;) = 0 0 < vo < vx 

Now figure 16, with the envelope defined by equation (C22), represents the same situation 
as figure 11, case 1. Hence, from case 1, 

and pe is given by equation (C 13). 
The next region of interest (see fig. 15) is that for which ve(r) = vl(r) < vx and 

In i t ia l  tangential velocity squared, v i  
Figure 17. - General case regime 2. 

r < ra. The Wheatcroft plot for this case is shown in figure 17. Hence, 

vo 2 vr u2 = U1(Vo) 2 2  
-0 
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fo r  electrons passing r once, 

for electrons passing r twice, 

-2 2 2 
2 0  uo = u (v ) 

and for  electrons passing r once, 

erf p = 1 

for  electrons passing r twice 

erf p = erf pe 

erf q = 0 

0 5 V 0 5  00 

0 5 vo 5 vx 

(C 2 4a) 

0 5 vo 5 vx (C24b) 

7 0 5 vo 5 vr 

vo vr J erf q = erf q1 

where pe is given by equation (C13) since u2(r) = ue(r) of equation (C22) in  the range 
0 5 vo 9 vx, and 

The space-charge integral for this region then becomes 

S(r) = - erf pe dvo - erf qldvo 
2 
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Once 

In i t ia l  tangential velocity squared, 6 
Figure 18. - General case: regime 3. 

Regime 3 is shown in figure 18; for this regime 

u2 = ul(r) 2 
-0 

for electrons passing r once, 

-2 uo = co 

for electrons passing r twice, 

-2 u = u2(r) 2 
0 

0 < vo < vr 

v > vr 
0 

O 5 V 0 5 ~  

0 5 vo 5 vx 

for electrons passing r once, erf p = 1 0 5 v 0 5  

for  electrons passing r twice, 

erf p = erf pe 0 5 vo 5 vx 

erf q = 0 0 < vo < V I  
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> vr erf q = erf q1 

and 
2 2  

- V o h  
erf q1 dvo 

2 

vr < vx, r > ra (C28) 

wkere pe is given by equation ((213) and q1 by equation (C26). 

In i t ia l  tangential velocity squared, v$ 

Figure 19. - General case: regime 4. 

The final regime of interest  in the general case is shown in figure 19. The analysis 
of this regime is identical to that of regime 1 (fig. 16). Hence, from equations (C13) 
and (C20) to (C23) 
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The space-charge integral for  the general case, equations (C13) and (C20) to (C28) 
may be put in the following more concise form: 

where = 1 for  1 s  t 5 r a7 and i = 2 for  r b s  t i  r m 7  

(v:, uz) = (vi, u;) v2 < vx J 
and the limits A and B are defined in table I. Note that from (C32), 

r 

5 03. 

The Wheatcroft case (case 1) corresponds to vx = 0. Case 3 is obtained f o r  ra = ro 
with u1 = 0, 0 -  -= vo 

TABLE I. - LIMITS A AND B OF SPACE- 

CHARGE INTEGRAL 

aIntersection point between vl(t) and v,(t). 
bIntersection point between 

uo = - q ( r )  - q(r)vo and u1 = ul ( r ) .  2 2 2 2  
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General Case for r c<  rm 

After modifying v,(t) (eq. (C32)) as indicated in case 2, equations (C30) then 
(C33) with table I represent  the most general  situation. 

Current to Collector 

To obtain the current  to the collector, it is only necessary to integrate equation (B4) 
along the envelope of the generalized Wheatcroft plot figure 15 (after integrating 
over dw,): 
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APPENDIX D 

ACCELERATING FIELD 

An accelerating field is present for r > rm (see fig. 10). The Wheatcroft plot for 

The analysis is the same as that for a retarding field with 
the general case (rm 5 rc) is shown in figure 20. 

51 = “2(V2) e o  

where ue = ue ve is defined by equation (C32) in the general case.  Hence, 
2(2) 

cf3 2 2  / e  - V o h  erf g (.3dvo 
S(r) = - - 

0 2 

where 

In i t ia l  tangential velocity squared, v$ 

Figure 20. - Wheatcroft plot for accelerating region. 

0 
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